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Rigidity enhances a magic-number effect in
polymer phase separation
Bin Xu 1, Guanhua He2, Benjamin G. Weiner 1, Pierre Ronceray 3, Yigal Meir4, Martin C. Jonikas 2 &

Ned S. Wingreen 2,5✉

Cells possess non-membrane-bound bodies, many of which are now understood as phase-

separated condensates. One class of such condensates is composed of two polymer species,

where each consists of repeated binding sites that interact in a one-to-one fashion with the

binding sites of the other polymer. Biologically-motivated modeling revealed that phase

separation is suppressed by a “magic-number effect” which occurs if the two polymers can

form fully-bonded small oligomers by virtue of the number of binding sites in one polymer

being an integer multiple of the number of binding sites of the other. Here we use lattice-

model simulations and analytical calculations to show that this magic-number effect can be

greatly enhanced if one of the polymer species has a rigid shape that allows for multiple

distinct bonding conformations. Moreover, if one species is rigid, the effect is robust over a

much greater range of relative concentrations of the two species.
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In addition to membrane-bound organelles, cells possess non-
membrane-bound bodies including nucleoli, P-bodies, and
stress granules, which are now understood as phase-separated

condensates1–4. Typically, the components of these condensates
have a high rate of exchange with the surrounding medium and
the condensates themselves are dynamic, rapidly assembling and
disassembling in response to specific stimuli5–7. The relevant
properties of components include the presence of intrinsically
disordered regions, as well as the valence, strength, and specific
sequence of interacting residues or domains.

One biologically relevant class of condensates are those
composed of two species of multivalent polymers or particles
with specific interactions that drive phase separation8–10. In the
simplest case, each component consists of repeated domains
that interact in a one-to-one fashion with the domains of the
other component. Such two-component multivalent con-
densates have been observed in several natural and engineered
contexts. One example, the algal pyrenoid, is a carbon-fixation
organelle, in which the two components essential for assem-
bly11 are the rigid oligomer Rubisco (the active enzyme in CO2
fixation) and EPYC1, an unstructured linker protein12. Another
multivalent system, PML (promyelocytic leukemia) nuclear
bodies that repair DNA damage13, relies on the Small
Ubiquitin-like Modifier (SUMO) domain that interacts with the
SUMO Interacting Motif (SIM) to form droplets14–16. This
system inspired in vitro experiments with engineered poly-
SUMO and polySIM of various valences10, and, indeed, phase
separation was observed with increasing concentrations of the
two polymers. Other in vitro two-component systems, e.g., an
engineered polySH3-Proline-Rich Motif system8 and a PTB-
RNA system9, also form droplets as concentrations are
increased.

A striking theoretical prediction regarding these two-
component multivalent systems is that, in the regime of strong
binding, condensation will be extremely sensitive to the relative
valence of the two components7. Higher valence is normally
expected to boost condensate formation8. In strongly bound two-
component systems, however, an exception occurs when the
valence of one species equals or is an integral multiple of the
valence of the other species. In this case, condensation is sup-
pressed in favor of small fully bonded oligomers7— a “magic-
number effect” reminiscent of the exact filling of atomic shells
leading to the unreactive noble gases. Here, we demonstrate that
this magic-number effect still occurs if all components are flexible
polymers, but the effect is maximized if one of the components is
rigid and compact (aka a patchy particle or patchy colloid17), in
which case fully-bonded oligomers are more entropically favored
over the condensate. Strikingly, while the magic-number effect
requires rather precise global stoichiometry when all polymers are
flexible, if one of the polymers is rigid the effect occurs over a
broad range of stoichiometries. While many intracellular con-
densates are held together by weak interactions of multiple types
(e.g., charged, aromatic, and hydrophobic18, as well as
pi–cation19, and pi–pi interactions20) natural protein–protein,
protein–RNA, or protein–peptide interactions such as SUMO-
SIM10 or synthetic interactions, e.g., based on DNA
hybridization21,22, can readily reach the strong-binding regime
required to observe the magic-number effect.

Results
Magic-number effect for one rigid and one flexible component.
To examine the role of rigidity in the magic-number effect, we
begin with two species that interact: a flexible linear polymer and
a rigid shape. The flexible polymer with n binding sites is denoted
as An and the rigid 4 ´ 2 shape is denoted as B8R; each binding site

on each species is considered to be a “monomer”. Previous results
from modeling the Rubisco-EPYC1 system, which established the
concept of the magic-number effect, can then be summarized as
follows: the A4:B8R system forms stable trimers (each composed
of two A4s and one B8R) and thus, compared to the A3:B8R or
A5:B8R systems, requires a substantially higher total monomer
concentration for the formation of large clusters, assuming equal
total stoichiometry of A and B monomers7.

Based on these observations, we predicted that flexible
polymers of length 8 together with rigid 4 ´ 2 shapes should also
constitute a magic-number system, in this case based on stable
heterodimers, since each constituent has 8 binding sites. To test
this idea, we simulated A7:B8R, A8:B8R, and A9:B8R systems
(Fig. 1a–c). The heat maps of the average cluster size for
different concentrations and specific bond strengths (Fig. 1g–i)
define approximate phase diagrams: regions with smaller
cluster sizes correspond to a homogeneous dissolved phase,
while regions with larger cluster sizes correspond to an
inhomogeneous condensed phase, i.e., a phase-separated
regime. Confirming the visual impression that the observed
large clusters arise from phase separation, rather than arising as
percolation clusters from homogeneous gelation23, we found
that for strong enough specific interactions ( ≥ 4kBT) the
internal cluster density remains approximately constant above
the transition, as expected for phase separation but not for
clusters formed by percolation (Supplementary Fig. 4). More-
over, the dense clusters we observe are always internally
connected by a network of specific bonds. We conclude that our
system represents a case of gelation driven by phase
separation23,24. Notice that in Fig. 1g–i, as specific interactions
increase from zero, cluster sizes initially increase, but stop
increasing above � 7kBT . This behavior is due to saturation of
the specific bonds, i.e., for large enough specific bond energies
essentially all possible bonds are formed.

As anticipated, the phase boundary for the magic-number system
A8:B8R occurs at substantially higher concentration than for the
non-magic-number systems A7:B8R or A9:B8R, reflecting the
stability of dimers composed of one flexible A8 and one rigid B8R
polymer (Fig. 1g–i,m). Note that we define a “dimer” as consisting
of one polymer of each species which only form specific bonds with
each other. By inspection, the specific interaction energy required
for the onset of the magic-number effect is � 5kBT for our
simulations with components of valence � 8.

What drives phase separation in these two-component
systems? In the fully bonded regime, the transition is not
driven by a competition between entropy and energy as in
Flory–Huggins theory25, but rather by a competition between
different types of entropy. For example, in the droplet phase of
the A8:B8R system, free dimers coexist with large gel-like
clusters. Each dimer has high translational entropy, while each
component within a cluster has very limited translational
entropy. However, this difference in translational entropies is
offset by an opposing difference in conformational entropies: in
each dimer, the binding sites of one species must match all the
binding sites of the other species, leading to a reduced total
conformational entropy. By contrast, the components in a large
condensed cluster are more independent, binding to multiple
members of the other species and enjoying a relatively high
conformational entropy. Because the importance of transla-
tional entropy relative to conformational entropy is reduced as
concentration increases, the system transitions from a uniform
dimer phase to a droplet phase with increasing concentration.
By contrast, in non-magic-number systems (e.g., A7:B8R or
A9:B8R), the polymers cannot form free dimers without
unsatisfied binding sites, and instead tend to form large fully-
bonded clusters even at low concentrations. This key difference
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leads to the drastic difference in clustering between magic-
number and non-magic-number systems.

While the simulations in Fig. 1 are performed in two
dimensions, because the magic-number effect depends only on
the ability to form small fully bonded oligomers, it also occurs in
three dimensions (Supplementary Fig. 3). In three dimensions, we
observe the onset of the magic-number effect around a specific
interaction energy of 4kBT for components of valence � 8. We
note that in three dimensions, phase separating systems can
become trapped in a state of interconnected “fibers”, but we
confirmed that our annealing procedure leads instead to a stable
droplet phase (Supplementary Fig. 5).

To mimic weak attractive interactions such as hydrophobicity,
we include a small non-specific bond energy in all our
simulations, which leads to more compact droplets. However,
these non-specific interactions are neither sufficient nor necessary
for the magic-number effect, though their magnitude influences
the location of the phase boundary (Supplementary Figs. 6 and 7).

To verify that in the A8:B8R magic-number system the phase
transition in the fully-bonded regime is driven by a competition
between dimers and a condensed phase, we measured the fraction
of polymers in the dimer form (Fig. 1n). For magic-number
systems in the low concentration regime, the polymers are
essentially all in dimers, while at very high concentration the
fraction of dimers is low since the system is dominated by a
condensate. Notably, the fraction of dimers is always higher than
in a null model (see Supplementary Note 1 for details). This

confirms the picture of an entropy-driven phase transition in
which the A8:B8R magic-number system is dominated by dimers
at low concentration and a condensed phase at high concentra-
tion. By contrast, the A7:B8R and A9:B8R non-magic-number
systems never have a high dimer fraction (Fig. 1n). Even at low
concentrations, the polymers tend to aggregate into clusters to
form as many bonds as possible.

Magic-number effect is weaker if both components flexible. In
the above, we considered one flexible component and one rigid
component. In principle, the magic-number effect should still
occur if both components are flexible. So does the rigidity of one
component matter? To answer this question, we simulated sys-
tems of two flexible polymer species, where one species has 7, 8,
or 9 binding sites and the other has 8 binding sites (systems
denoted as A7:B8, A8:B8, and A9:B8). Snapshots reveal fewer
clusters in A8:B8 than in A7:B8 or A9:B8 (Fig. 1d–f), and heat
maps of average cluster size confirm that higher concentrations
are required for clustering in the A8:B8 system (Fig. 1j–l). Cor-
respondingly, the A8:B8 system has smaller average cluster sizes
(Fig. 1o) and a higher fraction of dimers (Fig. 1p) than the non-
magic number systems in the strong-interaction limit. However,
compared to the case with one rigid component the magic-
number effect is noticeably weaker when both polymers are
flexible: the onset of phase separation occurs at a lower con-
centration and average cluster sizes are in general larger. What is
the origin of this difference?
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Fig. 1 Simulations of two-component multivalent systems reveal a magic-number effect. a–f Snapshots of 2D simulations of aA7:B8R , bA8:B8R , cA9:B8R ,
dA7:B8, eA8:B8, and fA9:B8 systems, where An/Bn denotes flexible polymers of species A/B with valence n, and B8R denotes rigid 4 ´ 2 rectangles.
Parameters: specific bond energy= 10kBT, non-specific bond energy= 0.1kBT, A:Bmonomer ratio= 1, monomer concentration= 0.3. Insets for the magic-
number systems in b and e show characteristic fully-bonded dimers composed of one A and one B polymer. g–l Heat maps of average cluster size as
functions of total monomer concentration and strength of specific bonds for systems in a–f. The ratio of A:B monomer concentration is equal to one, and
the non-specific bond energy= 0.1kBT. Red dots indicate parameters of snapshots in a–f. m Average cluster size for A7:B8R , A8:B8R , A9:B8R systems (solid
curves) with specific bond energy 10kBT, i.e., horizontal cuts through g–i. n Fraction of polymers in dimers for A7:B8R , A8:B8R , A9:B8R systems (solid
curves) with specific bond energy 10kBT. o Average cluster size for A7:B8, A8:B8, A9:B8 systems (solid curves) with specific bond energy 10kBT, i.e.,
horizontal cuts through j–l. p Fraction of polymers in dimers, i.e., one A-polymer and one B-polymer forming specific bonds only with each other, for A7:B8,
A8:B8, A9:B8 systems (solid curves) with specific bond energy 10kBT. In m–p, dotted curves show results for a zero-interaction-energy null model.
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Polymer-dimer conformational entropy influences clustering.
A possible reason for the enhanced magic-number effect in sys-
tems with one rigid component lies in the number of distinct
ways of forming dimers. Given the 4´ 2 rectangular shape of B8R,
an A8 polymer has 28 different ways to pack inside the rectangle,
i.e., the dimer degeneracy is 4 ´ 28 ¼ 112, where the factor of 4
comes from the four possible square-lattice orientations of a
rectangle with a defined “head” site. By comparison, the dimer
degeneracy for A8:B8 is higher, since there are 9960 distinct ways
for two length L ¼ 8 polymers to occupy the same lattice sites,
with the head of one of the polymers at a defined site. However,
to gauge the effect of dimer degeneracy on clustering, one should
actually compare the dimer degeneracy to the number of possible
conformations of the two polymers considered separately, since
the two polymers can sample conformations independently
within a condensed cluster. For the A8:B8R system, the number of
independent conformations is 4 ´ 2172, since 2172 is the number
of conformations of a polymer of length L ¼ 8 with a defined
head site; correspondingly, for the A8:B8 system the number of
independent conformations is 2172 ´ 2172. Therefore, the fold-
reduction in the number of conformations upon dimerization in
the semi-rigid A8:B8R system is ð4 ´ 2172Þ=112 ¼ 78, while the
fold-reduction for the flexible A8:B8 system is substantially larger
ð2172 ´ 2172Þ=9960 ¼ 474. The greater loss of conformations
upon dimerization in the fully flexible A8:B8 system will favor
clusters over dimers, and could therefore explain the larger
average cluster size for A8:B8.

To test this idea, we designed a system with a minimal dimer
degeneracy, but otherwise as similar as possible to the semi-rigid
A8:B8R system. Namely, we considered a rigid 4 ´ 2 shape together
with a flexible polymer, but with a rule that allows only a single “U-
shaped” conformation of the flexible polymer to achieve the full
dimer binding energy, while still permitting high conformational
entropy of the flexible polymers within large clusters (see Methods).
Dimers in this A8:B8U system have an effective degeneracy of only
4 ´ 2 ¼ 8. As shown in Fig. 2a,b, snapshots of simulations of the
A8:B8U system with monomer concentration 0.4 (i.e., 40% of the
lattice sites occupied by each species) dramatically confirm that
lower dimer degeneracy leads to more clustering. The A8:B8R
system with dimer degeneracy 112 is mostly composed of dimers,
with only a few small clusters, while the A8:B8U system with dimer
degeneracy 8 is dominated by one large cluster. Averaged results
obtained at different concentrations (Fig. 2c) confirm that lower
dimer degeneracy leads to more clustering.

Relative concentration of monomers influences clustering. So
far, we have considered cases where the two polymer species have
the same total number of monomers in the simulation domain,
i.e., the same monomer concentration. How do differences in
monomer concentration influence clustering for magic-number
and non-magic-number systems? To address this question, we
compared the systems A7:B8 to A8:B8 (both polymers flexible)
and A7:B8R to A8:B8R (one flexible polymer and one rigid 4´ 2
shape) over a range of relative monomer concentrations. To avoid
the confounding effect of changing the total monomer con-
centration, we fixed the sum of the concentrations of monomers
of the two species, while varying the ratio of the two concentra-
tions from 1:2 to 2:1 (Fig. 3).

Both non-magic-number cases, A7:B8 and A7:B8R, display a
peak of average cluster size around equal monomer concentra-
tion. This is because at equal concentration there are no excess
monomers of either species, so the system is driven to form large
clusters in order to maximize the total number of specific bonds.

By contrast, the magic-number system A8:B8 with both
polymers flexible displays a sharp dip in average cluster size

around equal monomer concentration. For strong specific
interactions, equal monomer concentration implies that all
monomers are in specific bonds. In this case, for the concentra-
tion of 0.3 shown in Fig. 3a, entropic considerations favor dimers
over clusters. However, away from equal concentrations the
resulting excess of monomers of one polymer species greatly
increases the internal conformational entropy of clusters, leading
to a rapid increase of average cluster size. The average cluster size
is symmetric around equal monomer concentration because the
A8 and B8 polymers are equivalent.

Strikingly, as shown in Fig. 3b, the average cluster size in the
A8:B8R system with one flexible polymer and one rigid shape is
asymmetric around equal concentration. Specifically, the system
with an excess of the rigid shape B8R (left of center) is much more
clustered than the system with an excess of the flexible polymer
A8 (right of center). An intuitive argument explains this
asymmetry: adding an excess rigid shape to a cluster allows
many new configurations of the flexible polymers, while adding
an excess flexible polymer to a cluster does not allow many new
configurations of the rigid shapes. Importantly, this asymmetry
implies a robustness of the magic-number effect for systems in
which flexible polymers interact with more compact multivalent
objects; specifically, a magic-number ratio of binding sites
disfavors clustering—with no fine tuning of concentration—
provided the flexible polymer is in excess.

Mean-field theory for the strong interaction limit. Can we go
beyond simulations to better understand the role of rigidity in the
magic-number effect? The well-known Flory–Huggins theory25

models the competition between mixing entropy, which favors a
dissolved phase, and interactions, which typically favor phase
separation. While successful in explaining phase separation in
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Fig. 2 Lower conformational entropy of dimers favors clustering.
Snapshots of simulations of aA8:B8R , and bA8:B8U systems. B8U denotes
rigid 4 ´ 2 rectangles that restrict a dimerizing polymer partner to adopt a
specific U-shape (see Methods). Parameters: specific bond energy= 10kBT,
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concentration= 0.4. Inset in b shows a fully-bonded U-shaped dimer.
c Average cluster size versus monomer concentration for systems in a, b.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15395-6

4 NATURE COMMUNICATIONS |         (2020) 11:1561 | https://doi.org/10.1038/s41467-020-15395-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


polymer solutions, Flory–Huggins theory only considers non-
specific interactions. More recently, Seminov and Rubinstein24

presented a sticker-solution theory that incorporates specific one-
to-one interactions among “stickers” on a single polymer species.
The one-component sticker theory predicts both a gelation
transition and condensate formation. However, two-component
multivalent systems with specific interactions present additional
mechanisms and a wider range of behaviors. Notably, as descri-
bed above, in the limit of high binding energies in these systems
the internal energy is constant—essentially all specific bonds are
formed—so the phase transition is a purely entropic effect driven
by a competition between a dimer (or small oligomer) phase with
higher translational entropy and a condensate phase with higher
conformational entropy7.

To analyze the role of rigidity in the regime of high binding
energies, we developed a simple theoretical model for our lattice-
based polymer system. Specifically, we consider two species of
lattice polymers with equal monomer concentrations in the strong
interaction limit. Thus every monomer is in a specific bond.

For one-component lattice-polymer systems, Flory–Huggins
theory provides a theoretical framework to compute the
configurational entropy and internal energy, and thus the free
energy25. For a two-component system in the fully-bonded
regime, the total internal energy is a constant, and so we focus on
the configurational entropy. We approximate the configurational
entropy in two limits: the dilute limit dominated by dimers or

other oligomers and the dense limit dominated by a condensate
(see Supplementary Note 1 for details).

We start by considering two magic-number systems composed
of flexible polymers and rigid shapes, but with different dimer
degeneracies: D8R ¼ 4 ´ 28 ¼ 112 for A8:B8R and D8U ¼ 4 ´ 2 ¼
8 for A8:B8U. In the dilute limit, we approximate the system as all
dimers, in which case the combined translational entropy and
internal conformational entropy of the dimers yields a free-
energy density

f dilute ¼ c
L
log

c
L

� �
þ 1� cð Þlog 1� cð Þ

þ c
L

L� 1ð Þ � c
L
log ðD8R=UÞ;

ð1Þ

where c is the monomer concentration of each species and L is the
polymer length, and the last term captures the dependence on
dimer degeneracy.

In the dense limit, we treat the two species as independently
adopting all possible configurations on the lattice, but then apply
a correction that reflects the requirement that the occupied sites
perfectly overlap, which in a mean-field approximation yields

f dense ¼ 2c
L
log

c
L

� �
� clog ðcÞ þ ð1� cÞlog ð1� cÞ

þ 2c
L
ðL� 1Þ � c

L
½log ðC8Þ þ log ðC8RÞ�;

ð2Þ

where C8 ¼ 2172 is the number of conformations of a flexible
polymer of length L ¼ 8 with a defined head site, while C8R ¼ 4 is
the corresponding number of conformations for the rigid shape.

In the thermodynamic limit, the lower of the two free energies
dominates. The non-convexity of the resulting free-energy density
as a function of concentration implies a region of coexistence of a
dilute and a dense phase, and the phase boundaries can be
determined from the convex hull of the free energy (Supplemen-
tary Fig. 8).

Varying the dimer degeneracy changes the free energy per
dimer, captured by the last term in Eq. (1) and thus influences the
phase boundary. The simple theory predicts a concentration of
0.61 for the phase transition of A8:B8U with its dimer degeneracy
of 8, while predicting that A8:B8R with dimer degeneracy 112
never forms condensates. While the theory is too simplified to be
quantitative, it qualitatively correctly captures the pronounced
shift to higher concentration of the A8:B8R phase boundary
because of its higher dimer degeneracy.

The above model can be readily adapted to systems with two
flexible polymers each of length L, and provides insight into the
dependence of the magic-number effect on valence (see
Supplementary Note 1). We continue to assume equal concen-
tration of monomers and the strong interaction limit, in which
case the free energy in the dilute limit is given by Eq. (1) with
dimer degeneracy DL, and in the dense limit by Eq. (2), with both
conformation numbers replaced by C8.

For the non-magic number system An�1:Bn in the dense limit,
a version of Eq. (2) that takes into account the different polymer
lengths still holds (Eq. S25). In the dilute limit, the smallest fully-
bonded oligomer includes nðn� 1Þ monomers of each type. We
roughly approximate the oligomer conformational degeneracy by
assuming the oligomer adopts an n ´ ðn� 1Þ-rectangular shape to
obtain a dilute-limit free-energy density (Eq. S28). Using these
free energies to compare the magic-number systems An:Bn and
the non-magic-number systems An�1:Bn, the predicted phase
boundary decreases from 0.68 to 0.15 for n ¼ 4, from 0.72 to 0.02
for n ¼ 6, and from 0.76 to 0.01 for n ¼ 8. Thus, this simple
theory captures the trend that the phase boundary decreases
more, i.e., the magic-number effect is stronger, for higher-valence
systems (see Supplementary Note 1 and Supplementary Fig. 2).
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Fig. 3 Relative concentration of monomers strongly influences clustering.
a Average cluster size of A7:B8 and A8:B8 systems versus monomer ratio
A:B, for average concentration 0.3. Inset: snapshot of the A8:B8 system at
monomer ratio 7:8, indicated by orange dot. b Average cluster size of
A7:B8R and A8:B8R systems versus monomer ratio A:B, for average
concentration 0.3. Parameters: specific bond energy= 10kBT, non-specific
bond energy= 0.1kBT. Insets: snapshots of the A8:B8R system at monomer
ratios 7:8 and 8:7, indicated by orange dots.
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Discussion
Motivated by the key roles played by membrane-free organelles in
a variety of cellular functions, we studied phase-separating sys-
tems composed of two species of multivalent polymers that form
one-to-one specific bonds. In particular, motivated by the
Rubisco-EPYC1 system of the algal pyrenoid, we focused on the
role of rigidity of one of the multivalent components. The results
reported here are based on simple lattice polymer models sup-
ported by equally simple analytical theory; nevertheless, the
model and theory capture essential features of real systems: (i)
There is a phase transition from a uniform solution to liquid
droplets. (ii) The low concentration phase is dominated by small
oligomers. (iii) Strong one-to-one specific interactions can lead to
a magic-number effect that implies striking exceptions to the
general rule that higher valence favors condensation. This last
feature is a key difference with respect to standard phase-
separating systems, e.g., those described by Flory–Huggins theory,
in which interactions are typically weak, non-specific, and non-
saturable, and for which there is no magic-number effect. (Pre-
vious work on two-component systems with strong one-to-one
binding26,27 adopted the no-cycles or tree approximation, which
allows at most one bond between any pair of molecules and thus
does not capture the magic-number effect considered here.) We
found that rigidity enhances the magic-number effect by
increasing the relative conformational entropy of the small oli-
gomers. Our lattice simulations are intended to provide con-
ceptual insight, not to capture the details of polymer shapes, sizes,
range of interactions, or entanglement. Nonetheless, we expect
the magic-number effect and our conclusions regarding the role
of rigidity to be robust with respect to these considerations, and
the effect has been verified in 3D lattice (Supplementary Fig. 3)
and off-lattice simulations7.

There remain open theoretical questions. What is the nature of
the condensed phase without attractive non-specific interactions or
when such interactions are repulsive? While the magic-number
effect persists in the absence of attractive non-specific interactions
(Supplementary Fig. 7), the droplets in such systems have very low
surface tension, leading to rough interfaces. How is the phase
behavior affected by more general magic-number relations, e.g.,
one polymer species with valence n and two partnering species
with valences p and q, with n ¼ pþ q, in particular when one or
more of these species is rigid or branched17? One simplification of
our lattice models is that the spacing between binding sites is
constant, and identical for both components. Systems of real
polymers or patchy particles may have less well-matched spacings
between binding sites, and the chemical properties of the linkers
(e.g., hydrophobicity)28 may also influence both oligomer and
cluster formation. Indeed, as shown by Harmon et al.23 linkers
with positive effective solvation volumes suppress phase separation
and gelation and would thus add to the magic-number effect.
Another question is whether a variant of the magic-number effect
applies to polymers with opposite charges. Borgia et al.29 specu-
lated that the lack of phase separation in the H1-Protα system
could be due in part to the nearly equal and opposite charges of the
two flexible proteins, an approximate “magic-number” condition
that would favor dimerization over condensation. Moreover, the
observed high conformational entropy of H1-Protα dimers implies
a low entropic cost of dimerization, which is the same reason a
rigid component favors dimerization. Future work employing off-
lattice models will address these questions, as well as the dynamical
properties of multivalent, multicomponent systems.

Consideration of phase-separating systems that rely on specific
interactions has strong biological motivation. Multivalent systems
with specific interactions allow for “orthogonal” phase separated
droplets to form: the specific interactions holding together one
class of droplets will typically not interfere with those holding

together another class30. Given the large number of distinct
condensates now recognized within cells31, droplet orthogonality
is a key consideration. While the interactions that drive phase-
separation in many of these systems may be weak, in principle
protein-protein, protein-RNA, and RNA-RNA interactions can
be strong enough to lead to magic-number effects. The required
energy scale of � 4-5kBT in our 3D simulations (Supplementary
Fig. 3) can be converted to a Kd value via the relation
E=kBT ¼ ln ðKd ´ lattice site volumeÞ, where E<0: taking a lattice
site volume of 20 nm3 roughly appropriate for a SUMO
“monomer” of � 90 amino-acid residues10,32, yields a range of
values Kd � 1–2.5 mM, whereas the measured Kd for SUMO and
SIM monomers was 10 μM10. Thus for systems as strongly
interacting as SUMO-SIM, magic-number effects in principle
allow for mechanisms of regulation. For example, chemical
modification of the effective valence of one component to change
into or out of a magic-number condition has been proposed as a
possible means of condensate regulation7. From an evolutionary
perspective, magic-number conditions could either be exploited
by cells, or avoided if there is selective pressure for phase
separation at lower concentrations.

The magic-number effect makes definite experimental predic-
tions. First, comparable magic-number and non-magic number
systems will have very different phase boundaries. Second, sup-
pression of phase separation by the magic-number effect is
enhanced by higher valence and by higher dimer or small oli-
gomer conformational entropy. Third, deviations from equal
monomer concentration reduce the effect, but with a notable
exception if one species is rigid and the flexible species is in
excess. We hope that the results and predictions presented here
will stimulate exploration of magic-number effects in multivalent,
multicomponent systems in both natural and synthetic contexts,
such as lens crystallin proteins33 or DNA origami34.

Methods
Model. Simulations were performed using a square grid system of 50 ´ 50 grid
points (or “sites”) with periodic boundary conditions. In the model, polymers with
different shapes occupy several connected (nearest neighbor) sites such that each
monomer occupies one site. There are two species of polymer in each simulation,
denoted as An or Bn , with n being the number of monomers in one polymer. A
monomer of A and a monomer of B form a specific bond when they occupy the
same site in the 2D lattice; no more than one A-monomer and no more than one
B-monomer can occupy a site.

Some polymers are considered to be “flexible” in which case any configuration
of connected nearest-neighbor sites is allowed. We also consider cases where the B-
polymer (B8R) is a rigid 4 ´ 2 rectangle, and a “U-shaped” variant (B8U)
described below.

Systems with only these specific interactions have a very weak effective surface
tension between condensed and dilute phases, which prevents formation of dense
droplets. Motivated by the existence of weak non-specific interactions between
polymers (e.g., due to hydrophobicity), we add a small non-specific interaction
between all nearest neighbor monomers as described below, which increases the
surface tension between phases and results in denser droplets.

We performed Markov–Chain Monte–Carlo simulations using the Metropolis
algorithm35. Briefly, in each simulation step we randomly propose a move of the
configuration. The move is always accepted if it reduces system energy, and
accepted with probability e�ðEf�EiÞ=kBT , where Ef and Ei are the final and initial
energies, if the move increases system energy. Three categories of moves are
proposed: single-flexible-polymer moves, single-rigid moves, and two-species joint
moves. Single-flexible-polymer moves are standard lattice-polymer local moves: the
end-point move, the corner move, and the reptation move7. Single-rigid moves
consist of one-step translations in the four cardinal directions and a 90-degree
rotation around the center of the rigid shape. In the regime of strong specific bonds,
the two species are typically held together by multiple specific bonds, which leads to
dynamical freezing. This is more severe if one of the species is rigid, since the moves
affect more binding sites. To enable the system to better explore configuration space,
in the case that one species is rigid, we include two-species joint moves such that
connected clusters of polymers move together, without breaking any specific bonds.
The joint moves consist of translating a connected cluster of the two species of
polymers together or rotating the whole cluster by 90-degrees around any point. To
obtain thermalized ensembles, we follow a two-step simulated annealing procedure:
we keep kBT constant and gradually increase bond strength. We first increase the
non-specific bond from 0 to 0.1kBT in 0.005kBT increments, keeping the specific
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bond energy at 0kBT . Then the specific bond energy is increased from 0 to 11kBT in
0.04kBT increments, while the non-specific bond energy is kept at 0.1kBT . Each step
of annealing is simulated with at least 50,000 Monte–Carlo steps (i.e., proposed
moves) per monomer to ensure complete thermalization and results are averaged
over 20-100 of the resulting thermalized snapshots.

Construction of the “U-shaped” A8:B8U system. To test how the phase diagram is
affected by dimer degeneracy, we designed a variant of the A8:B8R system that
minimizes the number of possible dimer conformations. Specifically, we defined a “U-
shaped” variant of the 4 ´ 2 rectangle (B8U), such that an A-polymer crossing the
central long axis of the rectangle (except at one end) only contributes one binding
energy from the two adjacent binding sites. This energetically favors A-polymer
partners that follow the U-shape (Supplementary Fig. 1).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this Article is available as a
Supplementary Information file.

Code availability
The code used in this study is available at https://github.com/binarybin/
polymersim (for two-dimensional simulations) and https://github.com/BenjaminWeiner/
magic-numbers (for three-dimensional simulations).
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Supplementary Figure 1. Schematic illustration of the U-shaped system A8:B8U. Black dots correspond to specific bonds and
white dots are monomers not in bonds. Only one (randomly picked) bond can form when the flexible polymer crosses the gap
(white space in the middle).

Cluster size in a null-model with no interactions
In the fully-bonded regime, the average cluster sizes in magic-number systems are lower than those in the non-

magic-number systems (Fig. 1g-l,m,o). However, average cluster sizes in magic-number systems also become very
high at high concentrations. This increase of cluster size occurs because at high polymer concentrations the limited
free volume for dimers favors condensation. Is the resulting average cluster size larger than one would expect in a
noninteracting system due to accidental overlaps? To estimate the effect of accidental overlaps, we consider a null
model with no interactions other than the single-occupancy condition for each species. As shown in Fig. 1m,o, the
average cluster sizes in the magic-number systems are close to those in this null model, supporting our conclusion
that magic-number systems do not experience enhanced clustering due to the specific interaction.

There is no magic-number effect for weak interactions
In the heat maps of the magic-number systems (Fig. 1h,k) there is a “bump” in the phase boundary, i.e., the cluster

size initially increases, and then decreases with specific bond energy. This occurs because in the weak-interaction
regime thermal fluctuations lead to free binding sites. The presence of these free binding sites precludes the magic-
number effect; indeed, the system resembles non-magic-number cases and, similarly, the phase boundary moves to
lower concentration with increasing interaction strength. However, as the interaction strength is increased further, all
possible bonds form and the magic-number effect takes over, shifting the phase boundary back to higher concentration.
The net result is the observed non-monotonic behavior (“bump”) of the phase boundary with increasing specific bond
energy for the magic-number systems.
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The magnitude of the magic-number effect increases with valence
Valence is a key parameter in both natural and engineered two-component systems that form specific bonds1–4. It

is therefore natural to ask how valence influences the magic-number effect. To theoretically address this question, we
studied systems composed of two species of flexible polymers An:Bm over a range of valences (Supplementary Fig. 2).
We observed that non-magic-number systems (An−1:Bn) display more clustering than the corresponding magic-number
systems An:Bn, despite the higher valence of the latter. Specifically, average cluster size at low concentrations decreases
by a factor of 2 from A3:B4 to A4:B4, 5 from A5:B6 to A6:B6, and 10 from A7:B8 to A8:B8 (Supplementary Fig. 2
insets). In Supplementary Fig. 2, we also compared the phase boundaries, i.e., the concentrations at which large
clusters begin to form (details in following paragraphs). Note that for each pair, the valence is lower for the non-
magic-number system, which competes with the magic-number effect. Indeed, for the lowest-valence case, A3:B4 has
a similar phase boundary to A4:B4 (Supplementary Fig. 2a). By contrast, for the higher-valence systems, the phase
boundaries in the regime of strong interactions occur at substantially higher concentrations for the magic-number
systems (Supplementary Fig. 2b,c). This confirms that higher valence increases the magnitude of the magic-number
effect. Note that at lower interaction energies, the presence of unbonded monomers means magic- and non-magic-
number systems behave similarly, which accounts for the “bump” in the phase boundary for A6:B6 and A8:B8.

We determined approximate phase diagrams for the A3:B4, A4:B4, A5:B6, A6:B6, A7:B8, and A8:B8 systems based
on fluctuations of cluster size. For each system and concentration, we first increased the non-specific bond from 0
to 0.1 kBT in 0.005 kBT increments, keeping the specific bond energy at 0 kBT . Then the specific bond energy was
increased from 0 to 11 kBT in 0.04 kBT increments, while the non-specific bond energy was kept at 0.1 kBT . Each
step of annealing was simulated with at least 50,000 Monte-Carlo steps (i.e. proposed moves) per monomer. While
increasing the specific bond energy, we recorded the average cluster sizes when the specific bond energy was an integral
multiple of 0.4 kBT . This simulation was independently repeated 100 times to compute cluster-size fluctuations, i.e.
the standard deviation over 100 simulations of the average cluster size in each simulation.

For each specific bond energy, we expect the peak of cluster-size fluctuations to closely indicate the phase boundary.
Therefore, we fit the standard deviation of average cluster size versus concentration with a Gaussian and took the peak
to be the concentration corresponding to the phase transition. Cluster-size fluctuations corresponding to different
specific energies were fitted independently. The smoothed curves in Supplementary Fig. 2 were obtained via cubic
spline, with additional fictitious data points included in the fit (but not shown) to induce a vertical slope for the
highest specific bond energies, consistent with the saturation of all bonds.
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Supplementary Figure 2. Phase boundaries of a A3:B4 and A4:B4, b A5:B6 and A6:B6, c A7:B8 and A8:B8 systems, obtained
from fluctuation analysis of mean cluster sizes for different specific bond energies. Insets: average cluster size of the systems in
the main panels versus monomer concentrations, for specific bond energy = 10 kBT . Parameters: non-specific bond energy =
0.1 kBT , A:B monomer ratio = 1.
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Three-dimensional model
Simulations were performed on a cubic lattice of 20 × 20 × 20 grid points (or “sites”) with periodic boundary

conditions. In the model, polymers with different shapes occupy several connected (nearest neighbor) sites such that
each monomer occupies one site. There are two species of polymer in each simulation, denoted as An or Bn, with n
being the number of monomers in one polymer. A monomer of A and a monomer of B form a specific bond when
they occupy the same site in the 3D lattice; no more than one A-monomer and no more than one B-monomer can
occupy a site.

The A polymers are considered to be “flexible,” such that any configuration of connected nearest-neighbor sites is
allowed. The B polymers (B8R) are rigid 2× 2× 2 cubes.

Systems with only these specific interactions have a very weak effective surface tension between condensed and
dilute phases, which prevents formation of dense droplets. Motivated by the existence of weak non-specific interactions
between polymers (e.g., due to hydrophobicity), we add a small non-specific interaction between all nearest neighbor
monomers as described below, which increases the surface tension between phases and results in denser droplets.

We performed Markov-Chain Monte-Carlo simulations using the Metropolis algorithm. Briefly, in each simulation
step we randomly propose a move of the configuration. The move is always accepted if it reduces system energy,
and accepted with probability e−(Ef−Ei)/kBT , where Ef and Ei are the final and initial energies, if the move increases
system energy. Three categories of moves are proposed: single-flexible-polymer moves, single-rigid moves, and two-
species joint moves. Single-flexible-polymer moves are standard lattice-polymer local moves: the end-point move, the
corner move, and the reptation move. Single-rigid moves consist of one-step translations in the six cardinal directions.
In the regime of strong specific bonds, the two species are typically held together by multiple specific bonds, which
leads to dynamical freezing. To enable the system to better explore configuration space, we include a two-species joint
move such that connected clusters of polymers are translated together, without breaking any specific bonds. To obtain
thermalized ensembles, we follow a simulated annealing procedure: we keep kBT constant and gradually increase bond
strength. We increase the specific bond energy in 0.1 kBT increments, from 0 to the final bond strength (2, 3, 4, or 5
kBT ), while the non-specific bond energy is kept at 0.1 kBT . The system thermalizes over 15,000 Monte-Carlo steps
(i.e. proposed moves) per monomer, then results are averaged over the subsequent 15,000 steps.

Supplementary Fig. 3 demonstrates that the magic-number effect is present in three dimensions. Snapshots
(Supplementary Fig. 3a-c) show the magic-number system A8:B8R dominated by dimers, whereas the non-magic-
number cases A7:B8R and A9:B8R form large clusters at the same concentration and binding energy. Heatmaps of mean
cluster size confirm that the formation of large clusters is suppressed in the magic-number system (Supplementary
Fig. 3d-f), and Supplementary Fig. 3h quantifies the prevalence of dimers.
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Supplementary Figure 3. The magic-number effect is present in three dimensions. a-c Snapshots of simulations on a 3D cubic
lattice of a A7:B8R, b A8:B8R, and c A9:B8R systems, where An denotes flexible polymers of valence n, and B8R denotes rigid
2 × 2 × 2 cubes. The flexible polymers (An) are red, the rigid cubes (B8R) are blue, and specific bonds where these overlap
are green. Parameters: specific bond energy = 5 kBT , non-specific bond energy = 0.1 kBT , A:B monomer ratio = 1, monomer
concentration of each species = 0.05. d-f Heat maps of average cluster size as functions of total monomer concentration (of
each species) and strength of specific bonds for systems in a-c. The ratio of A:B monomer concentration is equal to one, and
the non-specific bond energy = 0.1 kBT . g Average cluster size for A7:B8R, A8:B8R, and A9:B8R systems with specific bond
energy 5 kBT , i.e. horizontal cuts through d-f. h Fraction of polymers in dimers for A7:B8R, A8:B8R, and A9:B8R systems
with specific bond energy 5 kBT .
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Phase separation versus percolation
The biological condensates under consideration are phase-separated droplets and behave as liquids. However, some

systems where polymers bond and form connected clusters undergo a homogeneous sol-gel transition. Gels have
different physical properties than liquids, which would presumably have implications for biological function. How can
we distinguish between phase separation and homogeneous gelation in our two-component multivalent systems?

Within our mean-field theory, the system clearly undergoes phase separation as a first-order phase transition: the
free energy is non-convex and the order parameter (density) has a discontinuity, both hallmarks of a first-order
transition. Specifically, the non-convex profile of the free energy implies that the ground state of the system in the
thermodynamic limit necessarily consists of two phases for all concentrations lying between the points where the tie line
is tangent to the free-energy profile, and the densities of the two phases are those corresponding the points of tangency
(cf. Supplementary Fig. 8). (Note that although we use mean cluster size as an order parameter throughout this work,
here we use density because it exhibits more spatial variation in the finite lattice simulations and facilitates theoretical
calculations.) In the Monte Carlo simulations, local density analysis suggests that the macroscopic clusters are phase-
separated droplets rather than percolation clusters arising from homogeneous gelation. First, visual inspection of the
interacting system (Supplementary Fig. 4a) reveals that as the system concentration increases, the cluster or clusters
become larger but not denser. In the noninteracting system, in which “bonds” between polymers of different types
arise purely from accidental overlaps, this is not the case (Supplementary Fig. 4b). Instead, these systems form
large clusters as a simple consequence of percolation. Supplementary Fig. 4c quantifies this difference in terms of the
average local density inside the cluster at concentrations where macroscopic clusters are present. To define a local
density, we calculate the number of neighbors for every monomer inside a cluster that includes more than half the
proteins. (Note that because every site can be occupied by two monomers, the density ranges from 0 to 2.) This
quantity is averaged over monomers, and then over Monte Carlo samples. In the interacting system, the local density
is quite stable as the system concentration grows. By contrast, the noninteracting (“gel-like”) percolation clusters
become progressively denser as the concentration grows. This confirms the visual impression from snapshots that the
interacting system undergoes phase separation rather than homogeneous gelation. As the macroscopic clusters we
observe are always internally connected by a network of specific bonds, we conclude that our system represents a case
of gelation driven by phase separation5,6.

Finally, it should be noted that suddenly increasing the bond strength (a“quench”) can trap the system in a
kinetically-arrested state far from equilibrium. This metastable state resembles a network of fibers (Supplementary
Fig. 5a), which is easily distinguished from the equilibrium droplets (Supplementary Fig. 5b) by visual inspection.
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Supplementary Figure 4. Clusters are phase-separated droplets rather than artifacts of percolation. a Snapshots of simulations
of A7:B8R where cluster formation is driven by specific bonds. Parameters: specific bond energy = 10 kBT , non-specific bond
energy = 0.1 kBT , A:B monomer ratio = 1. b Snapshots of simulations of A7:B8R where cluster formation is due to random
percolation. Parameters: specific bond energy = 0 kBT , non-specific bond energy = 0 kBT , A:B monomer ratio = 1. c The
local density inside macroscopic clusters, averaged over all monomers in the cluster then averaged over independent Monte
Carlo samples (mean ± SD of Monte Carlo samples).
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Supplementary Figure 5. Clusters are phase-separated droplets at equilibrium rather than kinetically-arrested states. a
Snapshot of simulation of A7:B8R after a temperature quench where specific bond energy increased from 0 → 5 kBT . The
flexible polymers (An) are red, the rigid cubes (B8R) are blue, and specific bonds where these overlap are green. Parameters:
monomer concentration of each species=0.15, non-specific bond energy = 0.1 kBT , A:B monomer ratio = 1. b Snapshot of
simulation with same parameters as a, but after simulated annealing to a specific bond energy of 5 kBT .
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The role of non-specific interactions
The magic-number effect is due to a competition between translational and conformational entropy in the regime

of strong specific bond formation. However, our simulations also include non-specific interactions, which lead to more
realistic droplets with a higher density and surface tension (see Methods). How do such non-specific interactions
influence the magic-number effect? First, Supplementary Fig. 6 shows that non-specific interactions alone do not
lead to a magic-number effect. With the energy of specific bonds set to zero, no large clusters form, and the magic
number case A8:B8R (Supplementary Fig. 6b,e) shows no suppression in cluster size compared to the non-magic
number cases A7:B8R and A9:B8R. Supplementary Fig. 7 shows the dependence of cluster formation on non-specific
interactions for a range of specific bond energies. Weakening the non-specific interactions has two effects: 1) the
system must reach higher concentrations before large clusters form and 2) the clusters are less dense. However, this
does not change the tendency of magic-number systems to form dimers rather than large clusters. Indeed, the mean
cluster size as a function of concentration reveals a magic-number effect even in the absence of non-specific interactions
(Supplementary Fig. 7c). Taken together, Supplementary Fig. 6 and 7 demonstrate that non-specific interactions are
neither sufficient nor necessary for the existence of the magic-number effect.

Supplementary Figure 6. Specific bonds are necessary for the magic-number effect. a-c Snapshots of simulations on a 3D
cubic lattice of a A7:B8R, b A8:B8R, and c A9:B8R systems. The flexible polymers (An) are red, the rigid cubes (B8R) are
blue, and specific bonds where these overlap are green. Parameters: specific bond energy = 0 kBT , non-specific bond energy
= 0.1 kBT , A:B monomer ratio = 1, monomer concentration of each species = 0.05. d-f Heat maps of average cluster size
as functions of total monomer concentration (of each species) for systems in a-c. The ratio of A:B monomer concentration is
equal to one, the non-specific bond energy = 0.1 kBT , and the specific bond energy = 0 kBT .
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Supplementary Figure 7. The magic-number effect does not require non-specific interactions. a, Top Snapshots of simulations
on a 3D cubic lattice of (Left) A7:B8R, (Middle) A8:B8R, and (Right) A9:B8R systems. The flexible polymers (An) are red,
the rigid cubes (B8R) are blue, and specific bonds where these overlap are green. Parameters: specific bond energy = 5 kBT ,
non-specific bond energy = 0.1 kBT , A:B monomer ratio = 1, monomer concentration of each species = 0.05. a, Bottom Heat
maps of average cluster size as functions of total monomer concentration (of each species) for systems in a, Top at different
specific bond energies. The ratio of A:B monomer concentration is equal to one and the non-specific bond energy = 0.1 kBT .
b, Top Same as a, Top, but for non-specific bond energy = 0.05 kBT and monomer concentration of each species = 0.10. b,
Bottom Same as a, Bottom, but for non-specific bond energy = 0.05 kBT . c, Top Same as a, Top, but for non-specific bond
energy = 0 kBT and monomer concentration of each species = 0.20. c, Bottom Same as a, Bottom, but for non-specific
bond energy = 0 kBT .
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Flory-Huggins theory: a brief review
Flory-Huggins theory7 provides a simple analytical treatment of phase separation in a polymer-solvent system. The

theory estimates both the configurational entropy of the polymers and the enthalpy of polymer-solvent interaction
within a mean-field approximation. For strong enough polymer-solvent repulsion, the resulting free-energy density is
a non-convex function of the concentration, which implies phase separation.

To briefly review, the Flory-Huggins model considers a lattice on which solvents and polymers occupy sites. Each
solvent molecule or monomer occupies one site and all sites are taken to be singly occupied. We consider a system
with Np polymers, each with L monomers, and Ns solvent molecules. On the lattice with M sites in total, each site
has z neighbors.

In order to compute the configurational entropy, we need to estimate the number of configurations in the fully
mixed state. Assuming all solvent molecules are identical, they make no contribution to the number of configurations.
(Assuming solvent molecules to be distinguishable only contributes a factorial constant, which does not affect the
final phase diagram.)

Amongst the M lattice sites, we first select Np points on the lattice to be the “head” of each polymer, thus the
number of head configurations is:

whead =
M !

(M −Np)!Np!
. (S1)

For each of the other monomers of the polymer (“body”), it can choose among (z−1) sites if the sites are unoccupied.
Given the single-occupancy constraint, the number of positions that a “body” monomer can be chosen to occupy is
estimated as (z − 1)M−Nocc

M , where Nocc is the total number of occupied lattice sites before this monomer is placed.
Then the number of configurations for all “body” monomers is:

wbody =

(
z − 1

M

)Np(L−1)
(M −Np)!

(M −NpL)!
. (S2)

Thus the total number of configurations is:

W = wheadwbody =

(
z − 1

M

)Np(L−1)
M !

Np!(M −NpL)!
. (S3)

For simplicity, it is conventional in Flory-Huggins theory to express the free energy of the well-mixed state relative to
a state in which the polymers and solvents are fully separated. In this reference state, the number of configurations
is given by Eq. (S3) with M = NpL:

W0 =

(
z − 1

NpL

)Np(L−1)
(NpL)!

Np!
. (S4)

The fractional increase of the number of configurations with respect to the reference state is

W

W0
=

(
NpL

M

)Np(L−1)
M !

(M −NpL)!(NpL)!
. (S5)

Using Stirling’s approximation, we find the entropy change due to mixing:

Smix = kB log
W

W0
≈ −kB [(M −NpL) log(1− c) +Np log c] , (S6)

where c = NpL/M is the monomer concentration.
Within mean-field theory, the change of enthalpy density, or equivalently internal energy density, upon mixing is:

∆U

MkBT
= χc(1− c), (S7)

where χ is an interaction parameter, and we express energies in units of the thermal energy kBT . The change in
free-energy density is thus

∆f ≡ ∆F

MkBT
=

∆U − T∆S

MkBT
=
c

L
log c+ (1− c) log(1− c) + χ(1− c)c. (S8)

This Flory-Huggins free-energy density is a non-convex function of concentration c if χ is large. The total free
energy in the non-convex region is minimized by the system separating into two coexisting phases with concentrations
at the two common tangent points of a line touching the free-energy curve from below.
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Dimer versus condensate theory for magic-number systems
Here, we generalize the Flory-Huggins theory to systems with two polymer species in addition to the solvent. We

first focus on the magic-number condition in which the polymers have the same valency L, and restrict our attention
to the case with equal monomer concentrations, with each species having Np polymers. In the regime of strong specific
bonds between the two polymers, all monomers of the two species are considered to be in bonds, and the internal
energy is simply a fixed constant, which we neglect. We therefore consider each site in the lattice to be occupied
either by two monomers, one from each polymer species, or by solvent.

i. System with two flexible polymer species (AL:BL)
We model the two-species system separately in two regimes: the high concentration (“dense”) regime, dominated

by a condensate, and the low concentration (“dilute”) regime, dominated by dimers.
In the dense regime, the number of configurations of the fully-bonded system is the product of the number of

configurations of the two independent species, times the probability that the subset of sites occupied by the monomers
of one species exactly matches the subset of sites occupied by monomers of the other species:

Wdense = W1W2Pmatch, (S9)

where W1 and W2 are the total number of lattice configurations for each of the two species considered separately. To
compute W1 and W2, we slightly modify Eq. (S3): the translational degrees of freedom are still assumed to contribute(

1

M

)Np(L−1)
M !

Np!(M −NpL)!
, (S10)

while the number of different self-avoiding polymer conformations with a given head position, aka the polymer
conformation factor CL, is exactly computed numerically. The total number of configurations is therefore

W1 = W2 =

(
1

M

)Np(L−1)
M !

Np!(M −NpL)!
C

Np

L . (S11)

Numerical values of some CLs are:

L 2 3 4 5 6 7 8
CL 4 12 36 100 284 780 2172

.

We adopt a mean-field theory for the matching probability, i.e., we consider one species to occupy its complete
subset of sites, and then take the probability for the i-th monomer of the other species to fall within the same subset
of sites to be

P
(i)
match =

Sites in the matching region & not already occupied

Sites not already occupied
=
NpL− (i− 1)

M − (i− 1)
, (S12)

so that,

Pmatch =
∏
i

P
(i)
match =

(NpL)!(M −NpL)!

M !
. (S13)

The number of configurations in the dense case is therefore:

Wdense =
M !(NpL)!

Np!2(M −NpL)!M2Np(L−1)
C

2Np

L . (S14)

We find the free-energy density relative to the state of zero entropy to be:

fdense =
−TSdense

MkBT
=
−kBT lnWdense

MkBT

=
2c

L
log
( c
L

)
− c log(c) + (1− c) log(1− c) +

2c

L
(L− 1)− 2c

L
logCL.

(S15)

In the dilute regime, we model polymers as fully bonded dimers. The translational degrees of freedom can be
approximated by the same expression as in Eq. (S10) now applied to dimers as effectively a single species. Regarding
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polymer conformations within a dimer, we can exactly numerically compute the number of different ways of forming one
dimer with a given head position of one of its polymer types, aka the dimer degeneracy DL. (Note that DL =

∑
j d

2
L,j ,

where dL,j is the number of conformations of a single polymer of length L occupying a specific set j of lattice sites.)
The total number of configurations is

Wdilute =

(
1

M

)Np(L−1)
M !

Np!(M −NpL)!
D

Np

L , (S16)

and the free-energy density relative to a state of zero entropy is

fdilute =
−TSdilute

MkBT
=
−kBT lnWdilute

MkBT
=
c

L
log
( c
L

)
+ (1− c) log (1− c) +

c

L
(L− 1)− c

L
log(DL). (S17)

Numerical values of some DLs are:

L 2 3 4 5 6 7 8
DL 8 24 120 264 1144 2392 9960

.

To obtain the free-energy density at an arbitrary concentration c, we simply take the minimum of the dense and
dilute estimates of the free energy, i.e.,

f(c) = min [fdense(c), fdilute(c)] . (S18)

ii. Systems with one flexible polymer species and one rigid species A8:B8R and A8:B8U

When one species is a rigid shape, the dimer-versus-condensate theory still applies, but with several modifications.
One modification is that the polymer that forms the rigid shape has limited flexibility. Therefore, for W2 in Eq. (S11)
in the dense regime, we replace C8 = 2172 by C8R = 4, yielding

fdense =
2c

L
log
( c
L

)
− c log(c) + (1− c) log(1− c) +

2c

L
(L− 1)− c

L
[log(C8) + log(C8R)]. (S19)

In the dilute regime for the A8:B8R/U system, the number of ways to form dimers with a given center of mass is
reduced from D8 = 9960 to D8R = 112 and D8U = 8 in Eq. (S16), so that

fdilute =
c

L
log
( c
L

)
+ (1− c) log (1− c) +

c

L
(L− 1)− c

L
log(D8R/U). (S20)

Oligomer-versus-condensate theory for non-magic-number systems (AL1
:BL2

)
For systems with two flexible species of polymers with different valencies L1 and L2, we can similarly extend the

dimer-versus-condensate theory. In the dilute regime, as the system can no longer form fully saturated dimers, it
forms fully bonded oligomers composed of multiple polymers of each species. For simplicity, we consider the case when
L1 and L2 are co-prime, which includes our simulations with L1 = L2 − 1. The smallest oligomer in this case has
L1L2 monomers of each species. We focus on systems with equal monomer concentrations in the strongly interacting
limit, so that all monomers form specific bonds.

The dense regime is similar to that in the magic-number system, but with the two species having different valencies
L1 and L2. The number of configurations is

Wdense = W1,L1W2,L2Pmatch (S21)

where, similar to Eq. (S11),

W1,L1
=

(
1

M

)Np1(L1−1)
M !

Np1!(M −Np1L1)!
C

Np1

L1
, (S22)

W2,L2
=

(
1

M

)Np2(L2−1)
M !

Np2!(M −Np2L2)!
C

Np2

L2
. (S23)

Following Eq. (S13), we have

Pmatch =
(cM)!(M − cM)!

M !
, (S24)



14

where c =
Np1L1

M =
Np2L2

M is the concentration of each monomer type. Then the free-energy density is:

fdense =
c

L1
log

(
c

L1

)
+
c

L2
log

(
c

L2

)
−c log(c)+(1−c) log(1−c)+c

(
L1 − 1

L1
+
L2 − 1

L2
− logCL1

L1
− logCL2

L2

)
. (S25)

In the dilute regime, the system is dominated by oligomers that occupy L1L2 lattice sites. Since an oligomer is
typically much larger than a dimer in the magic-number systems, it is impractical to exactly numerically compute
the oligomer degeneracy, i.e., the number of ways to form a fully-bonded oligomer with N1 = L2 polymers of the
first species and N2 = L1 polymers of the second species. As a rough approximation, we assume that the dominating
configurations form the simplest compact shape, i.e., an L1 × L2 rectangle. We then use Eq. (S11) to estimate the
number of configurations of each species within an L1 × L2 rectangle (so that M → L1L2):

D1 =

(
1

L1L2

)L2(L1−1)
(L1L2)!

L2!
CL2

L1
,

D2 =

(
1

L1L2

)L1(L2−1)
(L1L2)!

L1!
CL1

L2
.

(S26)

The resulting expression for the total number of configurations in the dilute case is then similar to Eq. (S16).

Specifically, there are
(

1
M

)Nolig(L1L2−1) M !
Nolig!(M−NoligL1L2)!

center-of-mass configurations, where Nolig = cM/(L1L2) is

the number of oligomers. Each oligomer has a degeneracy Dolig = 2D1D2, where the factor of 2 comes from the two
possible orientations of the oligomer rectangle, and D1 and D2 are the number of possible configurations of the two
species within the rectangle. Then the total number of configurations is:

Wdilute =

(
1

M

)Nolig(L1L2−1)
M !

Nolig!(M −NoligL1L2)!
D

Nolig

olig , (S27)

and the free energy is

fdilute =
c

L1L2
log

(
c

L1L2

)
+ (1− c) log(1− c) +

c

L1L2
(L1L2 − 1)− c

L1L2
log(2D1D2). (S28)
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Supplementary Figure 8. Free energies of the analytical models in the dilute (orange) and dense (blue) limits of a A4:B4, b
A6:B6, c A8:B8, d A8:B8U, e A8:B8R, f A3:B4, g A5:B6, and h A7:B8 systems.
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